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I. INTRODUCTION

In broad terms, multi-echelon inventory theory is concerned with a

variety of inventory problems involving two or more interrelated supply or

production facilities. Since most actual inventory problems of significance

have multi-echelon aspects, it is natural that previous research on single-
facility problems be extended along this additional dimension of complexity.
To fully appreciate tht- directions of multi-echelon research, therefore, it

is useful to have a basic familiarity with analytic approaches to the single-

facility problems. Surveys of this work are given by Scarf (1963-47),

Vienott (1966-57), Iglehart (1967-34), and Hochstaedter (1969-32). 1 The

surveys by Vienott and Iglehart also emphasize early results of multi-product

and multi-activity research.

1. Structure of Multi-echelon Inventory Systems.

The most common notion of a multi-echelon inventory system is one

involving a number of retail outlets (stores, facilities, installations, bases)
in business to satisfy customer demands for goods and which, iinturn, act -Ls
customers of higher-level wholesale activities (warehouses, depots, factories).

The wholesale activities themselves may be customers of still higher-level

wholesale activities or production facilities. A grocery store chain, as i11us-

trated in F'gure 1, is a familiar example of such a system. It is important

to note that the system in this example pertains to a given product such as a

particular kind and brand of soup. Even for the same grocery store chain,

another product may have a different structure (there may be a different

factory, or no regional warehouses, or a different mix of retailers, etc.).

A multi-echelon inventory system can also be portrayed as a directed

network wherein the nodes represent the various activities .r facilities in the

systen and the linkages represent flows of golds. If the network has at most

one incoming link ior each node and flows are acyclic (no loops in the network),

it is called an "arbore9cence" or inverted tree structure. Thus, the example

ir. cigure 1 is an arborescence. When viewed as a directed network, it is

apparent that much m re complex interconnected systems of facilities can exist-,

a retailer may obtain resupply from more than one wiolesaler, or a wholesaler

may procure from more than one f-ctory, or a retailer may sometimes supply

another retailer; the number of such combinations is very large. However, most

lIn each pair of reference numbers, the first is the year of publication and
the second identifies tht, paper ir the Reference section.
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Figure 1. Distribution System for a Grocery Product

of the work in multi-echelon inventory theory has been confined to arborescence

structures.

When considering arborescence-type activity structures, the various levels

of the system are commonly identified as echelons and the problems investif,ated

are multi-echelon ones. However, since this descriptor makes sense only for

a-borescence structures and has had even more restricting definitions in somhe

studies, its use in the remainder of this review will be avoided except as defined

and used in a particular study.

Finally, two special kinds of arborescence structures are commonly ised

in the literature. As illustrated in Figure 2, these are the series structure,

consisting of two or m,)re activities with each supplying only one other (lower-
level) activity, and the parallel structure, consisting of a number of activities
experiencing independent external demands; both cases have an implied infinite

source of supply as indicated. In the series case, external dern.nds may occur

only at the lowest activity or at all activities according to the assumptions

of a part-cular study.

2. Interpretationb of Inventory "Activity".
The literature on multi-activity inventory theory contains a wide variety

of labels and meanings of what is referred to here as an "activ:t/". Most

commonly, it is defined is an entity that maintains a physical stock of one

or more products in order to meet specified demands and which, in turn, obtains

resupply frorm some specified (or implied) source or sources. Other definitions,
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Figure 2. Special Types of Arborescence Structures

used in particular studies, expand the role of the entity to include production

or repair capabilities as well as supply; thus, an activity may represent a

stage of factory production, together with an in-pro cess inventory, that satis-

fies requirements of other activities and which receives (orders) materials

from specified source activities. Still other studies define activities as

more abstract processes that are interrelated in some fashion. Due to these

various meanings and nomenclatures, the more generic term "activity" will be

used in this review unless otherwise explicitly defined in a particular study.

3. Multi-activity Inventory Control Problems.

Viewed in terms of a network ci activities, with external demands occurring

at some or all of them, the basic multi-activity inventory control problem for

a given product is one of establihing rules or policies which, if followed,

cause flows of the product through the network as functions of time and which

satisfy a prescribed performance objective such as minimizing expected costs

or meeting a prescribed level of customer service. The set of such policies,

for any given system, usually contain ordering policies (resupply, procurement,

production, repair), which prescribe amounts over time that each activity orders

from its supplier(s), and supr, policies (issuing, delivery, distribution,

allocation) which control amounts over time that each activity ships to those

activities designated as its customers. A commnon sitti:tioii which warrants this

distinction is one where there is insufficient stock (d-ue to ranc.mness of

demand or a variety of other causes) .L a particular supplier to fill ali Lhe

orders it receives (as prescribed by the ordering policies of its customers)

and some kind of rationing, or supply policy, is thereby required.
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To solve this inventory control problem, a variety of models have been

formulated whIch are characterized by environmental assumpt'ons similar to

those commonly applied in models of the single-activity problem. The more

important of these distinguishing features are expressed by the following
I

dichotomies:
Deterministic - Stochastic. In a deterministic model, ixternal demands

at each designated activity are known in advance with certainty. For
a stochastic model, the demando are Pssumed known to within a given
probability distribution (or condition~l distributions as used in
Bayesian and other techniques).

Single-Product - Multi-Produce A single-product model deals with only
one product at a time, ignoring possible interactsons with other
products. A multi-product model considers a number of products
simultaneously in terms of at least one interrela',ing factor such
as a buiget or storage constraint.

Stationary - Nonstationary. Parameters used to define external demands are
assumed to be independernt of time in a stationary model whereas they
may vary over time in a nonstationary model. (The same distinction
may a1sb pertain to cost factors and other elements of the problem).

Continuous Review - Periodic Review. In a continuous review model,
opportunities to review the stock position of the system and to
implement derived policies are assumed to occur continuously ever
time. In a periodic review model, such opportunities are assumed
to exist only at discrete points in time, normally with a given
periodicity.

Consumable Product - Reparable Product . In a reparable product model,
some or all of the amounts is=,:- d •.et external demands are re-
generated somewhere in thf. system in the form of items which, after
undergoiiig repair or overLaul processes, can be reissued. In a
consumable product mode], all issues reprcsent permanent losses to
the system.

Backlog - No Backlog . A n.,Iel assumes backlogging of demand if unsatis-
fied demands are retaine(l and satisfied from later resupply. In the
no-backlog (lost sales) as ;umption, unsatisfied demands are not
retained.

In the review that follows, these cJescriptors are often used to identify

and characteri ze vario..:s multi -a,:;ivitv i•'t-ntory control and other models that

have been developed. In pa;-iculai.. Sert-."i I1 is concerned with deterministic"

inventory 2ontroi modý ir 'vher.ýa - tioi _ covers stochastic inventory

control models.

1These are actually .nly convenient labels' o'- catch-phrases used to rot' .. ly
categorize models. The exact meanings Inust, in each case, be glea .
the raitherpatiýal formulation of the model.,
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4. Allocation Models.

Decisions affecting the allocation or distribution of a given amount

of stock to several activities in a multi-activity system represent supply

policies in a restricted typa of inventory control process. This class o

problems also includes the one of redistributing existing stocks to pro-

vide better service. Problems of thise kinds are reviewed in Section IV.

5. Other Multi-activity Problems.

In addition to inventory control and allocation problems, there are

several other decision, planning, or evaluation problems that have been

investigated in a multi-activity environment. Solutions to these problems

tend to have "one-time" applications in contrast with the everyday appli-

cations of results of the inventory control models. In Section V, several

such problems are identified and studies relating to their solutions are

reviewed.
6. Informality of the Review.

This review of work in multi-activity inventory theory is informal

in the sense that the use of mathematics is avoided and there is a consid-

erable bias of authorship with respect to selections, interpretations, and

comments. The latter is particularly applicable to Section V!, where

imprecsions of the current state of the art and directions that future work

might follow are presented.
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II. DETERMINISTIC INVENTORY CONTROL MODELS.

In the deterministic multi-activity inventory control problem, schedules

of external requirements to be satisfied by each activity in the system are

given as functions of time for one or more products. In this problem, many

of the activities are often viewed as being various kinds of production facil-

ities or processes for which ordering poliLies are irite.preted as production

schedules. Inventories in such systemr may be beld in the form of semi-fini;he~d

products at va:ious production stages or as finai prclucts at terminal facil-

ities. Various constraints are normally imposed, such as limitations on

produc'ion or transportation capacities, or interproduct dependencies of

several kinds. The usual objective of models for this problem is to minimize

total production, transportation, and inventory costs.

One of the early investigations of the deterministic multi-activity problem

was by Evans (1958-22). The stationary case was considered for a general

activity network with external demands given in terms of deterministic rates

at designated nodes and production occurring at other specified nodes. 'iiie

formulation permits transportation and production losses and considers the

production of interdependent products. Inventories are permitted, btll only

artificially in terms of known "stockpile rates" analogous to demand ra t es.

Capacit) limits on production and transportation are considered. With these

assumptions and a corresponding cost structure, a model is developed to find

flow rates through the network which min-mize tolal expected costs per unit of

time. Recognizing -omputation difficulties, a number of restrictions are then

specified which reduce the model to a linear programming transportation

problem. Finally, transport paths of the general model are restricted in such

a %ay that results concerning multi-product systems may be derived from a

two-product system and solutions to the two-product probl'm are given.

T'.e first model to overcome severe limitationxs of early work on the

problem was by Zangwill (1066-67). A periodic, iaulti-product, multi-

activity deterministic model was developed that consisted of a linking tog-,ther

of single-activity models developed earlier (1966-66). The model assumes that

the activities in the system are arranged in an acyclic network wherein the

flow if products is uni-directional; that is, the output of any activity does not

go to any other a tivity that directly oi indirectly provides inputs to the given

activil",. The model is multi-produ , to the extent permitted bv such network
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representations; for example, an activity with two inputs and one output

can represent the combining (in a production stage) of two component products

into a single output product. The model also assumes that production costs

are concave, inventory costs are piecewise concave functions, demands are

known in advance for a given number of time periods, excess demand is back-

logged, and production/inventory times are fixed integral numbers of time

periods.

Zangwill first shows that the total cost function is piecewise cor.cave,

He then shows that the function is concave ou certain bounded polyhedral sets
called basic qets. Using theory of concave functions, he shows that the total
cost, considered as a function on a particular basic set, attains a minimum at

an extreme point of the set. The union of all basic sets is proven to be the

se' of all feasible production schedules. The total cost function, now con-

sidered as a function of all feasible production schedules, must be minimized

orF some basic set, and hence, at an extreme point of some basic set. Defining

the dominant set as the set of all extreme points of all basic sets, an optimal

production schedule must therefore be in the dominant set. The principal

result of the analysis consists of characterizations of the dominant set. For

special cases of series and parallel networks, Zangwill develops dynamic pro-

gramming algorithms that search the dominant set for optimal production

schedules.

In a later study (1969-68), Zangwill shows that previous results for the

case oi a series activity structure without backlogging can be deduced imnedi-

ately from the characterization of extreme flows in networks having exactly

one source (sink). Furthermore, under the concavity assumptions on costs,

there exists an optimal schedule which is an extreme flow in the associated

single-source network. (An extreme flow is an extreme point of the convex

set of feasible solutions for the problem and, as Zangwill previously demon-

strated, has the property that any rode in the network can have at most one

positive input.) Exploiting these results, Zangwill presents an extremely

efficient algorithm that is superior to the one in (67).

Recognizing the network in.erpret,,tion of the deterministic problem,

Veinott (1969-'.8) pointed out that such network models are equivalent to trans-

shipment Leour.ief substitution systems and, as such, the characterization of

the extreme flow follows alternatively from the characterization of the extreme

points of the system's solution set. With thi6, Veinott expands t-pon the
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formulation of the problem as a Leontief substitution model with concave

costs; in particular, the arrangement of activities in a general arborescence

structure is considered. Veinott shows that the solution algorithm developed

by Zangwill e:-tends to this case but that the amount of computation, depending

linearly upon the number of wholesale facilities but to the fourth power of the

number of time periods, can still be extensive. With rather severe assumptions

about the cost functions, Veinott presents a simpler and more efficient solution

algorithm for the general arborescence model.

After summarizing and extending previous results -f the single-activity

deterministic problem, Love (1968-44) 'onsidered the case of a number of

activities arranged in series. He shows that if, in addition to concavity

assumptions, per-unit ordering costs are non-increasing over time for each

activity and per-unit holding costs for each activity are always greater than or

equal to those for the next activity, in the series structure, then there exists a

nested extreme optimal solution. He defines a nested production schedule as

being one where if any activity produces in a given time period, then so does the

next facility in the series structure. This result is exploited to develop a more

efficient solution algorithm. Love next considers the stationary case where

requirements and co:ts are the same in each time period. He shows that under

mild conditions there is a periodic optimal schedule; that is, the amount pro-

duced at a given activity is repeated a fixed number of periods later. An

algorithm is presented for computing the periodic optimal schedule for most

cases of intorest.

As a continuation of the Zangwill-Veinott approach, Kalymon (1970-39)

developed a decomposition algorithm which is compitationally feasible for

arborescence structures that were previously too large to solve. The model

assumes that hulding costs are linear and that the production Fosts, at all

but the final product facilities, ar,ý linear with a set-up charge. In the

model, the amount of computation is shown to increase exponentially with the

number oi facilities having followers, but only linearly with final product

facilities.

A deterministic, periodic, multi-product, multi-activity production/

inventory problem was considered by Von Lanzenauer 'lQ70-60); this work

represents a generalization of previous studies by Elmaghraby-Ginsberg (1964-21)

and Young ('967-63). In this study, all costs (production, holding, shortage)
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are assumed linear with set-up (production conversion) costs for production for

each activity and product. For each product, a sequence of the activities is

specified to indicate the technological ordering of production stages for the

product. Each activity can process only one product in each time period. The

problem is to determine the sequence of production at all activities as well as

the lot size and number of lots for each product stuch that total costs are

minimized. For this problem, a mixed bivalent linear prograrr king model

is constructed. It is noted that problems of realistic cize cannot be solved

by currently available integer programming algorithms.



T-259 10

III. STOCHASTIC INVENTORY CONTROL MODELS

In the single-activity inventory control problem with stochastic demands,

a simple kind of ordering policy, identified as an (s, S)-type policy, has been

subject to intensive analysis. For this policy, an order is placed to raise

available stocks (on hand plus due in) up to S (stockage objective) whenever

the available stock becomes less than or equal to s (reorder point); for

dynamic models, the values for s and S may change over time. The policy para-

meters, s and S, are commonly referred to as "critical levels".

The (s, S) -type ordering policy has also played a major role in multi-

activity research. Although a number of techniques previously used for single-

activity problems have been extended to the multi-activ.ty problem, the use of

(s, S)-type policies represents a common denominator. Some of the mult'i-

activity research has been concerned with finding conditions under which thesc

policies, when applied to individual activities, are optimal from a system point of

view. Other studies investigate system behavior when such policies are assumed

and methods are sought for assigning values to s and S at each activity such that

some system performance criterion is satisfied. In general, whenever the use

of (9, S)-type policies can be justified, the multi-activity inventory control

problem becomes more computationally tractable; otherwise, as several of the

studies have demonstrated, the amount of computation require: to find optimal

solutions becomes prohibitive for problems of realistic size.

For convenience, the more important techniques used to analyze the multi-

activity inventory control problem are labeled as follows, with the authors of
1

initial or early papers being indicated in each case:

Expected Cost Analysis (Berman-Clark)
Stationary Process Analysis (Love)
Dynamic Programming (Clark-Scarf)
Dynamic Process Analysis (Bessler-Veinott)
Network Theory (Connors -Zangwill)

In most of these approaches, several papers have appearci which extend

or refine the initial development; these are reviewed below in approximate

chronological order.

'Other techniques that have been used, or are potentially applicable, include
stochastic linear prograrnmIng, servornechanism theory, and simulation.
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1. Expected Cost Models.

In expected cost models, the form of the inventory policies is expressed

in terms of a few variables; no.rmally, (s, S)-type policies are assumed with

s and S considered as unknowns. Expressions for expected costs per unit of

time are then constructed as functions of the policy variables. Values for

the policy variables that minimize the expected average costs are found by

calculus or difference o-quation methods. Such rrmodels are further characterized

as being stationary and usually stochastic; either continuous or periodic

review may be assumed. The first analytic woil' on inventory problems used

this approach; in fact, the famous Wilson lot size formula is the solution of

such a model (with deterministic demand).

One of the early attempts to extend this approach to the multi-activity

inventory problem was by Berman-Clark (1955-5). This work treated a single

product In a two-level activity structure (several bases supplied by a depot) in

context with three main procurement practices: life-of-type, where sufficient

amounts are purchased all at once to satisfy all expected future demands;

periodic procurement, where a system purchase is made at regular time intervals

in sufficient quantities to last throughout the period; and open-end contracting,

where an order on a manufacturer is placed each time the system-wide stocks

reach a minimum (critical) level. For each type of procurement, expressions

for expected average costs, as functions of (s, S)-type policy variables, are

derived which include representations of the following features: random external

demands at bases; repair or no repair (reparable or consumable items); two

kinds of resupply tinte for bases, normal and oxpedite; transshipment among

bases; obsolescence probabilities; random lead time and repair cycles; and

the usual holding, shortage, and ordering costs, all linear. From these cost

functions, expressions for minimizing values of the policy variables are obtained.

For bases, the critical levels are functions of Lagrangian multipliers which are

used to control distribution among the activities in the system.

Hadley-Whitin (1961-28) also used the expected cost approach to analyze

the inventory prob1,bm for a low-demand item in a single-level system of

parallel activities (depots). Demands at each depot are assumed to be inde-

pendent, stationary Poisson distributions. Procurement lead time is assumed

to be constant as well as the time required for either of two available modes

of redistribution among the depots. Items are ordered one -t a time from an

external source as demands occur; therefore, the total system stock remains



T-259 12

constant over time. It is assumed that redistribution to a depot will not

occur until there is a back order. With these assumptions and linear functions

for inventory costs, decision rules are developed for allocation of new pro-

curement, redistribution of stocks amung the depots, and for determining depot

stockage objec';ives in order to minimize expected costs resulting from system

and depot stoc,,outs, cost of redistribution, and costs of transportation from

the source. Wben more than a single unit is on order from the external source,

the allocation of each unit ready to be delivered is determined by the solution

of a dynamic programming problem. The assumption that demands are replaced

one-for-one by procurement and the form of the redistribution policy confine

the model to low demand items.

In a .ater study (1963-29), Hadley-Whitin used the same general approach

to consider the case of higher demand items. This time, it is assumed that the

system as a whole uses an (s, S)-type policy and that redistribution is considered

whenever a depot's stock falls to critical levels that are set by external criteria.

Furthermore, only that depot triggering the redistribution decision is considered

as a receiver each time. All other assumptions for this model are essentially

the same as for the previous one. Again, cost minimizing expressions are

obtained for determining stockage objectives at the depots, values for the system

procurement policy, and sources and amounts for redistribution decisions. A

dynamic programming algorithm is presented for allocating system procurements

to the depots upon receipt from the external source.

The same problem (a number of parallel activities in a single-level system

subject to centralized control) was also investigated by Gross (1963-26). In

this study, however, attention is confined to a single time period and no a

2 . assumptions are made concsrninp the form of 3tockage and redistribution

policies. The objective is to find amounts to order and/or to redistribute

at the beginning of the period such that total expected costs during the time
I

period are minimized. In the model, all costs (ordering, holding, shortage,

transshipment) are ass imed linear without set-up costs. Deliveries into the

1 It should be noted that confinement of attention to a single time period

avoids implicit assumptions, which are not always valid, concerning the
stationary properties of the inventory process in infinite horizon expected
cost models. Thus, this model can be considered as being truly optimal for
the stated problem, whereas the other expected cost models are generally only
approximations.
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system and transshipments occur at the start of the period (zero procurement

and transshipment times). External demand may be given by any continuous

density function which may differ by location. Under these assumptions, a total

cost function is first formulated for the case of two locations. From this,

minimizing values for ordering and transshipment amounts are derived which are

dependent upon the initial stock posture at each activity and the system as a

whole. An iterative procedure is then given to generalize the results to an

arbitrary number of locations.

The problem formulated by Gross was also considered by Krishnan-Rao

(1965-41), but with one important difference. Instead of allowing transshipments

to occur at the start of the period in anticipation of expected shortages, it is

assumed that shortages actually realized at the end of the period are satisfied

from stocks at activities with ending surplus; thus, transshipment amounts are

not considered as policy variables as in the Gross model. Because of this

simplifying assumption, Krishnan-Rao obtain a simple solution to the problem

of determining amounts to order that minimize the expected costs. Numeric
S• examples are given to illustrate results of the model.

2. Stationary Process Analysis.

If nonstationary aspects of inventory problems are removes, then techniques

based upon Markov processes and elements of renewal or queuing theory become

useful. Here, a fixed ordering policy of a simple form (usually an (s, S)-type

policy) is chosen for which the inventory level over time becomes a particular

stochastic process. The princial problem then is to find a stationary distri-

bution of the process which, if it exists, will be a function of the policy used

and of the demand distribution, but not of any costs that rmght be involved.

However, a cost structure can be imposed upon the process in expressions

representing average expected cost per time unit. These may then be mini-

mized with respect to the several parameters that characterize the policy.

One of the first investigations of a multi-activity inventory control

problem using a stationary analysis method %;?S by Love (1967-43). In this

study, a two--activity series system is consiucred, with both activities using

continuous review (S-l,S) policies (such policies are also commonly called one,

foi -one ordering policies). External demanJ, occurring only at the lower

Although the expected cost method is sindliar to this procedure, it does not

include a formal analysis of the stationary properties of the underlying
stochastic process; instead, implicit assumptions are made in this regard
which are not always valid.
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activity, is assumed to be given by a Poisson distribution. Resupply time at

both activities is exponentially distributed. Per unit shortage costs are assumed

to be linear according to age of the back urder. Holding costs are linear and

reorder costs are not considered since ordering is one-for-one as demands occur.

Under these assumptions, expressions are obtained for expected total waiting time

(e. g., back order days) and stock on hand per unit of time. Love then demonstrates

convexity properties of the expected total system cost as functions of the stockage

objectives and, as a result, the existence of optimal stockage objectives (values for

S at each activity). He then establishes bounds on the minimizing values and gives

an algorithm for detcrmining the optimal policies.

The inventory control problem for a repairable item in a two-level supply/

repair sy3tem was investigated by Rosenman-Hockstra (1964-46) using a

stationary process approach. In this study, it is assumed that items can be

repaired locally (area facilities) or centrally (NICP - National Inventory Control

Point) according to given rates and that losses to the system are negligible. It

is further assumed that external demands are Poisson distributed, that lower-level

facilities use continuous review, one-for-one (S-1, S) ordering policies, and that

replenishment times and repair cycles are given constants. Under these

assumptions, a cost-free model is developed with the objective of distributing

a given system stock among the various activiti-2s in order to minimize total

expected customer waiting time.

In the model, stationary distributions for number of items in the NR.P repair

cycle and net (serviceable) stock at the NICP are developed, from which an expres-

sion for average delay in satisfying demands from lower activities is derived.

Similarly, distributions for repair cycle and stock on hand at the area facilities

are given, from which the average number of back orders are obtained and summed

over all areas to find the average customer waiting time. Using these results, a

marginal value method is used to distribute system stock in order to minimize total

customer waiting time.

In addition to the model itself, the paper presents actuarial and exponential

smoothing techniques for demand forecasting, and discusses institutional methods

and procedures for implementing the results.

Sherbrooke (1968-48) also used the stationary process approach to analyze the

multi-product problem involving inventories of recoverable (repairable) items in

a system of parallel activities (bases) supported by a higher level activity (depot).



T-259 15

In the model, a Bayesian procedure is used for estimating external demands

(occurring only at base level),with the prior distribution being a gamma function

and the underlying demand being a logarithmic Poisson process. The derivation

of these distributions is discussed in some detail. Although the expression of demand

as a Bayesian process is separable from the muiti-activity and other structural

aspects of the model, the use of the indicated distributions enables the derivation

of a distribution of demand observed by the depot that provides a decomposition of

the problem.
The model assumes (S-i, S) continuous review policies at lower activities ad

since all stocks are conserved (being always reparable), there is no system re-

ordering after initial stocks are established. The primary objective of the model

is to establish stockage objectives (values for S) at each activity which minimize

the sum of expected back orders on all recoverable items at the lower installations

for a given budgetary constraint. Each recoverable item may be repaired at base

level and/or at depot level according to a specified ratio. Econom-nies of scale are

not considered and lateral resupply (rediatribution) is assumed to not occur.

"Relative back order costs may be included in terms of essentialities bfr base and

by item. Repair and shipping times are aissumed random (implicitly in the assumed

form of the demand distributions). Under these assumptions and objective function,

a five-step procedure is given for finding optimal solutions. First, using a pre-

viously developed expression for expected number of base back orders, the average

delay per demand against the depot is found for each item as a function of depot

stock. Second, for each level of depot stock and each base, expected base back

orders are calculated as a function of the base stock. Third, for each level of

depot stock, an allocation to the bases is made which minimizes the total expected

back orders; this is done by a marginal analysis method. Fourth, the minimum

expected system back orders is found as a function of total system stock (bases

plus depot). Finally, the multi-item aspect is considered by the use of a marginal

value method to allocate a givea investment across items: each additional incre-

ment of investment is assigned to that item for which the largest reduction in

expected system back orders will rebult.

The mathematical justification for this computational procedure is then given

wherein th-. objective function is also generalized to allow constraints upon the

expected number of back orders at each base. For the generalized objective function,

an integer programming problem results which can be reformulated with Lagrange
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multipliers and is separable by item. However, computational difficulties arise

if the Lagrange multipliers differ by base; this occurs whenever separate back order

constraints are given by base. If they are all assumed equal, the marginal analysis

method used in the computation procedure provides a good approximation to the optimal

solution, particularly if the number of items is large enough.

Althou&,h tche model assumes stationarity, it is suggested that periodic recom-

putaticns be made whenever systemic changes in the support or demand structure

become kno~wn. The paper concludes with two generalizations of the model: the use

of a Bayesian procedure for estimating the ratio of base versus depot repair, and

the inclusion of condemnation (system losses) in the model formulation.

Confining attention to stationary properties of the inventory process, Simon
(1971-501 refined and extended corresponding portions of the Sherbrooke model.
As before, a parallel structure of bases supported by a depot is considered where

repair of a failed item can occur at base and/or depot level. The model allows

system losoes to occur at a specified rate; a totally reparable or totally consumable

item can be considered according to the value of this condemnation rate. F-- bases,

an (S-1, S) replenisl" ent policy is assumed; at the depot, an (s,S) policy is ubed.

Repair times, shipping times, and procurement lead time are all assumed to be

deterministic and independent. External demands are assumed to be generated

by independent Poisson processes with given rates. With these ass-Imptions, Simon

investigates the stationary properties of a given item in the multi-activity structure.

For each base, he obtains exact expressions for the steady-state number of back

orders and proves that the number of units in repair is stationary and Poisson

distributed. Similar results are obtained for the depot. For a consumr Ae item,

exact and approximate expressions are derived for the stationary expected depot

response time to a base demand; the approximate expression is analogous to one

used by Sherbrooke.

3. Dynamic Programming.

The mathematical technique most often used in formal inventory theory is the

fulictional equation approach of dynamic programming. In this method, periodic

review is assumed and optimal policies for a given time period are found from a

cost finction that normally consists of three parts: (a) costs of ordering, if any,

(b) expected (period) costs which are independent of the ordering policy and (c)

expected future costs (from the next period on) which do depend upon amounts
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ordered. Under suitable restrictions upon cost and demand processes, simple types

of cost minimizing policies exist and may be calculated bv a recursive process which

starts at some future time period and works backwards in time.

As a continuation of the classic dynamic programming approach used in single-

activity problems, Clark (1958-13) and Clark-Scarf (1960-16) formulated and solved

the problem of a single product carried at an arbitrary number of activities arranged

in a series structure. In the model, external demand can be stochastic, dynamic,

and can occur at any arbitrary mix of the included activities. The model permits

economies of scale (fixed reorder costs) only at the highest activity in the series

structure. At lower ictivities, ordering (shipping) costs are assumed linear as

functions of amount ordered. The model assumes periodic review and expected

period costs, (holding and shortage) are assumed convex. Shipping times are

constants but can be an arbitrary number of periods for each activity. Backlogging

is assumed at all activities.

The essential innovation of this model is the interpretation of the inventory
system as a nested set of echelons rather than as individual activities. The
model associates, with each activity, an echelon consisting of all stock in the

system at that activity and below, including all on hand and in transit (due in)
amounts. With this interpretation, the multi-state variable problem for the

system as a whole (i. e., the on hand and due in amounts at each activity are

separate state variables in the total cost function) can be decomposed into a
set of interconnected one-state variable problems, one for each echelon in the

system. Each of these problems can then be solved, by the usual single-activity
technique, for critical levels constituting the optimal ordering policy.

The set of one-state variable problems are interconnected by "implied

shortage costs" generated at each echelon (except the highest one) and passed

on (included in the cost function) to the next higher echelon. Thus, the optimal

policy is first established for the lowest echelon, from which implied shortage
costs are obtained. These costs are then included in the cost function for the

next higher echelon for which the process is repeated. The procedure continues

up the echelon structure until optimal policies are obtained for each echelon.

The ordering policies determined in this fashion ta' the form of periodic (S-i, S)

policies at lower echelons and an (s, S)-type policy at the highest echelon. The

issuing policy is that each activity satisfies as much of an order (demand) as
may be permitted by available stocks in each instance.
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Iti (16), a briez analysis of the parallel echelon structure is given. It is

shown that, in general, the problem cannot be broken down into a set of single-

activity problems. However, a solution of this character is given unde, the

assumption that the stock positions at the reveral lower installations is continually

"in balance", i. e.,. that the stock position at each activity is not significantly over

or under that of the other activities rehtive to expected costs. A concluding

short section of this paper discusses extensions of the theory to serial repair

and production processes.

In a subsequent paper 11962-17), Clark-Scarf considered the case of a fixed

reorder cost at lower installations with all other elements of the problem the

same as before. In this case, it was found that the optimal solution could not

be broken down intiD a sequence of single-state variable problems, but that the

cost function frr the optimal solution could be bounded (above and below) by

such calculations. Thus, critical levels for each activity and time pe, iod could

be found with associated costs which bracket those of the optimal solution.

Furthermore, it is demonstrated that if the policies (critical levels) for the

upper bound were used, then the actual costs incurred would be less than or

equal to those of the upper bound.

. "A more comprehensive multi-activity inventory control model based upon

the Clark-Scarf approach was developed (in 1962) by Clark-Metcalfe; although

the model itself was not documented (except in the form of a computer program),

example results are given in (14). This model incorporated features which,

although not proven optimal, provides more realistic representations of prac-

tical inveA-.Lry problems. The model permits stochastic, dynamic external

demandr, at any activity in a general arborescence structure, recovery through

repair ( he treatment of this aspect of the model was later shown to be cptimal

(9) ), deterministic time lags (procurement, resupply, repair cycles) of arbitrary

length, multi-stage production with inventories permitted between stages, and

a form of continuous stock review. The cost structure of the model is analogous

to that of the Clark-Scarf model. For portions of the activity structure consisting

of activities in series, the implied shortage cost functions of the Clark-Scarf

method are used to interconnect echelons. For portions consisting of parallel

activities, a shortage cost function is built up from the cost functions of the

lower activities to provide echelon interconnections (see (45) for a description of

this procedure). Outputs of the model consist of values for a single critical
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level at each lower activity and values for an (s, S)-type policy at the highest

activity; a supply policy is derived from the implied shortage cost functions.

In conjunction with the decision model, a simulation model was constructed to

provide realizations of system p-rformance while operating under the ordering

and supply policies generated by the analytic model.

Continuing the Clark-Scarf formulation, Hochstaedter (1970-31) considered

the case of activities in parallel with a common supplier. The cost and demand

structure was assumed the same as in the Clark-Scarf model, but with fixed

reorder costs permitted at the lower activities as well as at the higher echelon.

As in (17), upper and lower bounds are established for the optimal system costs,

with each set of bounds yielding (s, S)-type ordering policies for each activity.

The bounds are established by first computing ordering policies for each lower

activity using the standard single-activity formulation. It is shown that the

optimal system costs are then bracketed by the sum of the lower activity costs

plus a function of system stock alone. For the lower bound, the function is

given by the costs obtained by viewing the system as a single installation faced

with a demand equal to the sum of the lower installation demands. The upper

bound is given by the same cost function, but with period costs (for the higher

echelon) being augmented by an implied shortage cost derived from the lower

installation computations; these costs are analogous to those previously described

but asslime a different functional form. As in (17), Hochstaedter suggests the use

of levels associated with the upper bcund as an approximation to the optimal policy.

He also derives an expression for the difference between the upper and lower cost

functions which is useful in assessing the accuracy of the approximation.

The extension of the Clark-Scarf series multi-activity model to include

combined ordering and disposal policies was aLcompiished by Fukuda (1961-25).

In general, disposal policies determine conditions under which excess stock is

removed from inventory at some cost which may be negative indicating a revenue

from the disposal. Addressing first the single-activity case, Fukuda assumes
that the decision to be made at the beginning of each period is to either order,

dispose, or neither. With this assumption and the usual cost structure, he

determines optimal ordering-disposal policies in terms of critical levels for

each time period. These results extend directly to the series echelon structure

wherein critical levels are obtained for each activity and time period. In this
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case, implied shortage costs for dispos;'.l are derived whic-h are analogous to

those for ordering in the Clark-Scarf model; such costs apply whenever a higher

echelon wants to "sell" some excess stock but cannot because the stock is

physically located at some lower level. The implied shortage costs for disposal

are passed downward (included 4n the cost function of the next lower echelon) in

contrast to the implied shortage costs for ordering which are passed upward in

the structure.

In previous papers, Scarf and Fukuda developed, respectively, Bayesian

and maximum likelihood policies for the single-activity problem. Fukuda

(1960-24) extended these results, combined with the disposal policies of (25),

to the Clark-Scarf series model. For the Bayesian policy, Scarf had shown

+ha,' the single-activity problem could be reduced to a one-state variable

roblem if all cost functions are linear and if the demand distributions as

well as the prior distribution of the demand parameters are members of the

gamma family. Fukuda now shows that this result extends directly to the series

multi-activity case; namely, that the solution of an interconnected seQuence of

one-state variable problems provides optimal Bayes ordering policies for the

series structure. Furthermore, the extension holds up in the situation where

each activity in the system experiences external demand; thus, Bayes policies

are determined for various serial repair and production processes. Finally,

Fukuda extends the results to the disposal case, resulting in a Bayesian order-

ing and disposal policy for the series situation. Analogous results are obtained

for the maximum likelihood approach, wherein demand is assumed to be given by

a gamma distribution with an unknown parameter and critical levels (ordering

and disposal) are obtained for each activity and time period as linear functions

of the unknown parameter which are then evaluated by expressions based upon past

demand observations.

Veinott (57) used a convexity theorem of Karush (40) to yield a much simpler
proof of optimality for the Clark-Scarf model. The theorem was also applied

by Iglehart-Morey (1971-36), in the case of two facilities in series, to obtain

optimal ordering and shipping policies that take into account the accuracy of

demand forecasts; othe ,ise, the model is the same as in (16). In this model,

it is assumed that demand forecasts are made each period which may differ

Veinott (1971-59), using a uttwork approach, also gave a simple solution to

a one period problem of a series str'.:,ure with zero resupply times.
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from the true demand. The cost furction for the model includes conditional

expectations with respect to demand given the forecast. As results, critical

levels are obtained that are analogous to those of the Clark-Scarf model except

that the levels for the lower activity are expressed as a function of

the forecast.

Zacks (1970-64) formulated a Bayesian model of the two-echelon parallel

activity structure, assuming that Poisson-distributed demands occur at the

lower activities and that the prior distribution of the Poisson parameters is a

gamma distribution. He assumes no transshipment among lower activities and

no return of stock to the higher activity. In the cost structure cf the model,

linear holding and shortage costs are assumed, but no ordering or shipping

costs are included. With these asaumptions, a multi-state variable dynamic

programming solution procedure is developed. The optimal Bayesian policies

are expressed as functions of on hand and due in amounts at the various acciv

ities;' the analysis does not provide simple policies in the form of critical levels

and ru .es for their use.
T.i a later paper (197U-65), Zacks reconsiders the model, this time allowing

unrequired stock at lower activities to be returned to the higher facility, linear

ordering costs (but no fixed component) at the higher facility, and no shipping

costs between echelons. The same general Bayesian approach as in the earlier

model is used, and all other assumptions are the same as before. Again, a

dynamic programming formulation is pre! onted, from which the form of the

optimal policies is derived. The principal result of the analysis is that the

optimal ordering policy of the lower activities is obtained by solving an integer

convex programming problem with linear constraints. The ordering polXZy for

the higher activity is expressed as the minimizing value of a recursively defined

function; ordering amounts depend upon stock on hand plus due in and upon past

demand observations.

The case of activities in a series structure, where each activity has a

fixed ordering cost in addition to the usual inventory costs was favestigated

by Williams (1971-61). Using the Clark-Scarf definition of echelon, a multi-

state variable dynanric p ogramming model is developed for both the backlog and

lost sales case. !!'or the backlogging model, the assignment of shortage costs
as a function -.1 the age oi the back order is considered, but it is noted that

this ir'reases the number of state viriables of the model. The special case

where a pro Ilict unit progresses thrcugh all z ctivities in the series structure
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within the same time period is considered in the form of a sub-model. For the

sub--model, calculation procedures are presented which are considerably more

efficient than those of the more general model.

4, Dynamic Process Analysis.

In previous papers, Veinott developee a technique for analyzing inventory

problems, first for the single-product, single-activity case and then for the

multi-product, single-activity problem. Veinott's methods represent a departure

from the traditional functional equation approach of dynamic programming, being

based instead upon a direct analysis of the underlying stochastic process to

cbtain the form of optimal policies and to inveitigate their properties. These.

results were extended by Bessler-Veinott (1966-7) to the multi-activity inventory

problem.

In the first section of this paper, the correspondence between the multi-

activity and multi-product, single-activity problems is established. In general,

when the stock at each facility is viewed as a product, results of the multi-product,

single-activity problem have corresponding interpretations for the single-product,
multi-facility case. The principal result is that if nonstatiollary aspects are

su'•tably restricted and the initial stock is small enou, the optimal policy in

each time period is to order up to a critical stock level at each facility, where

the critical levels minimize a one-period cost function which includes the usulll

inventory costs except for fixed reorder costs.

In the next section, the arrangement of the activities in an arborescence

structure is considered. It is assumed that the demands during each period

at each activity are satisfied by available stocks at the facility, with excess

demands being immediately transmitted toj its sutiplier for possible satisfaction.

Excess demands are successively passed up, with backlogging occurring only at

the top supplier. With this supply policy, the one-period cost function is

established from which the optimal stock levels are derived. In general, the
optimal policy is obtained by solving N n-dimensional minimlization problems,

where N is the number of periods and n is the number of activities.

X Having obtained the one -period cost function, several effects of parameter

variations are investig-ted, supported by numeric calculations for a system

consisting of three parallel activities supplied by one higher-level activity.

Various properties of the shortage cost function and the one-period cost function

are also established for use in the subsequent development.

I. This descriptio'i for the Ve~nott technique was coined for pirposes of this roev~•.
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Next, bounds are established for the optimal stock levels, The upper

bound for a particular activity is based upon the assumption that there is no

stock at any facility supplying or supplied by that facility. The lower bound

is then calculated under the assumption that each facility supplied by the

facility stocks its upper bound and the supplying facility has a very large

stock. 4in iterative procedure is then given to sharpen these bounds, although

it is suggested that, in practice, it may not be worthwhile proceeding beyond

the initial values. Finally, an algorithm is presented for computing approx-

imations to the optimal levels based upon the values for the lower bounds; it

is noted that the approximations are often optimal for the series activity

struc:ture.

In the last two sections of the paper, several relations among facilities

having a common supplier are established and simplifications resulting when

there are symmetries in the supply struc'ture are discussed. In particular,

it is proven that if two facilities having a common direct supplier "look alike"

and if certain convexity assumptions are imposed, then it is optimal to stock

the same quantities at both facilities.

In the Bessler-Veinott model, it was necessary to place restrictions upon

starting ;tocks in order that optimal policies be given by minimizing one-period

cost functions. This restriction was removed by Ignall-Veinott (1969-37) for

activity networks having a "nested" property and a specified supply policy; this

paper also established the characterization of policies satisfying the one-period

minimization criterion as being "myopic". The model presented assumes that

at the beginning of a period, stocks are ordered for each activity at a common

unit cost. A supply policy is given in terms of a procedure for allocating the

starting stocks tv satisfy 4emands at the facilities. This procedure is based

upon identification of groups o' activities as being suppliers of other groups

of a'tivities. The model assumes that stocks at one facility may 3atisfy shortages

at any facility providing that they are replaced from exogenous sources at the

beginning of the next period. With these assumptions and the cost structure of

the previous model, it is shown that the myopic policy is optimal for any initial

stock posture. This result, es,tblished first for the stationary case, is then

extended to the case where there is a deli:Lry lag and to cases of nonstatiorary

costs and demand distributions.
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5. Network Thgoryj.

Although multi-activity inventory systems have long been recognized in

terms of a network of activities with flows of material occurring among the

nodes, the first application of network theory for the stochastic inventory

control problem was by Connors-Zangwill. In principle, this approach is an

extension of the network analysis of the detirministic problem.

In the Connors-Zangwill model (1971-18), requirements or availabilities

at the nodes are allowed to be discrete random variables with known conditional

probability distributions. For a given number of periods and linear objective

criterion, the problem is to calculate the network flow that minimizes expected

cost. To handle this problem, special kinds of networks, called "replicating

networks", are defined which contain two special types of nodes in addition to

the normal ones: replicating nodes and collating nodes. A replicating node has

a single input arc and several output arcs such that the flow on each output arc

is identical with that on the input arc; a collating node has the opposite property.

After formulating a problem in terms of a replicating network it is transfnrr-,d

into an equivalent replicating network having only one source and one destination.

For the transformed network, an efficient computation algorithm is presented

which is analogous to the standard min-cost/max-flow algorithm for deterministic

models. It is shown that although this problem can be solved by linear programming

under uncertainty, the network approach is much more efficient for large problems.

The method and computation procedure are illustrated by a two-period production/

inventory problem with backlogging.
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* .IV. ALLOCATION MODELS

The problem of allocating or distributing a given amount of system stock

to the various activities in a multi-activity sy9tem may be viewed as a restricted

type of multi-activity inventory control problem. If such allocatiuns include

existing stock postures at the activities, the problem becomes one of determining

redistributions in order to satisfy a system cost or performance objective. Such

redistribution problems naturally occur when stocks at the various activitiec get

"out-of-balance" or maldistributcd because of the random characteristics of

demand or previously unknown shifts in demand patterns.

Studies of the allocation problem are characterized by the assumptions that

are made concerning the problem to be solved and by the analytic technique that

is used. The particular models reviewed below are representative of the various

kinds of problem formulatiuns and solution procedures that have been developed.

One of the earliest investigations of the allocation problem was performed

* .by Simpson (1959-52). He assumes that there are a number of activities (ware-

houses) faced with independent external raneom demands and that the system as

a whole receives a given amount of stock for a particular item which is to last

(satisfy demands) for a fixed length of time. Emergency replenishment is allowed

whenever the stock at a warehouse is reduced to a previously established trigger

level; it is assumed that fixed coGt penalty is charged each time this happens and

that no distinctions are made as to the source of the replenishment (external or

internal). The problem then is to allocate the given quantity to the warehouses to

satisfy given performance criteria. Two criteria are considered: system cost

minimization and minimization of weighted number of unsatisfied demands.

Under these assumptions (and others that are not explicitly stated), simple

allocation rules are obtained for the two performance criteria. For the cost

minimization criterion, the rule states that the probability (weighted by

emergency resupply penalty) of demand being equal to the quantity allocated

minus the emergency trigger level be equalized across all warehouses. For

the second critcrion, where weights are specified across warehouses for lost

sales, the rule states that the probability (times the weighting factor) of demand

exceeding the quantity allocated be equalized across the various warehouses.

A redistribution problem involving a one-time decision to relocate stocks

among several user locations was investigated by Allen (1958-1). A model is

constructed with the objective of minimizing transportation costs plus shortage
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costs at the end of a defined period of time. It is assumed that transportation

costs, for any pair of locations, are proportionate to the amount moved between

the pair. With given assumptions about the demand distributions, various

properties of the solution to the problem are established which permit the use

of a simple iterative computation method. With less general assumptions about

unit transportation costs, even simpler methods of solving the redistribution

problem are obtained. In particular, the cases of zero costs and costs indepen-

dent of origin and destination are examined.

Allen continued the study of this problem (1961-2), but this time with a

fixed set-up charge for each shipment from one location to another. Also, a

normal distribution of demand at each activity is assumed, and only the case

where per-unit transportation costs are all zero is considered. With these

assumptions, an expression for total system cost of redistribution is obtained

which is transformed into a function dependent only upon the total shipments

from or to an activity. From this, total system cost is derived as a function

of normalized stock positions before and after redistribution and of a 0-1

variable identifying activities that actually ship or receive material. A method

for minimizing this function is then derived and a computing procedure is

suggested. Further development of the computation procedure is given in (3).

The classical dynamic programming formulation of the inventory control

problem is used by Iglehart-Lalchandani (1967-35) in a periodic review allo-

cation model. A system of two activities is considered, each experiencing

external random demands that are not necessarily independent. Period costs

(expected holding and shortage costs) are assumed to be convex; shipping costs

are linear without a fixed component. A critical final assumption is that the

sum of the inventory levels at the two installations after delivery of any allocated

stock must be less than a given fixed amount. Thus, the problem is one of

periodically allocating a fixed total system stock to the two activities. Under

these assumptions, it is found that the optimal (least cost) policy is given by

critical levels for each activity and time period, and simple rules are given

for their use which depend upon the respective stock levels at the two activities.

It is stated that an extension of the problem to more than two installations wo uld

require additional techniques than those used in this study.
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V. PLANNING AND EVALUATION MODELS.

In contrast with inventory control models that are directed towards

managing the everyday flow of material in a multi-activity inventory system,

a number of models have been developed for use in various kinds of planning

or evaluation problems. As examples of such problems, it may be desired to

choose particular activities in a multi-activity system which shou!d carry each

product in a multi-product inventory in order to minimize overall costs, or

evaluations are desired of the relative merits of several different postulated

multi-activity inventory control policies, or locations are to be found in an

existing multi-activity system at which stocks are to be positioned to meet
possible one-time requirements. Models that have been developed for these

and other problems of similar nature are reviewed in this section.

1. Inventory Positioning Models.

Given an inventory system consisting of a number of interconnected

activities that collectively carry a variety of products, it can well happen that

the mix of external demands in terms of where they occur, as well as identifi-

cations of external sources can vary from one product to another. Also, even

though demands can occur at a given activity, it may not be economical to

carry inventories there in view of alternative supply opportunities elsewhere

in the system. An important problem in this sith.,tion is one of determining,

for each product, the particular activities at vnich inventories should be

carried such that total system costs are minimnized or some other system

performance objective is satisfied. Different aspects of this problem have

been investigated in the studies reviewed below.

One of the earliest investigations of this kind of problem was a study by

Simpson (1953-51). This work was concerned with a multi-stage manufacturing

process where in-process inventories may be carried. The general problem is to

determine stages of the process that should carry in-process inventories and

amounts to be carried at each such stage in order to achieve a desired level of

operating efficiency. To solve this problem, Si.npson formulates an expected

cost model which assumes an ordering mechanism wherein each unit withdrawn

from any stage is immediately reordered from the previous (next higher) stage.

Also, it is assumed that for included inventories, stockage objectives are set
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in advance to provide specified levels of service; thus, assessment of shortage

costs are avoided. It is shown that the domain of the cost function under these

assumptions is a convex polyhedron and that the minimum is attained at a vertex

of the polyhedron; each vertex corresponds to a particular combination of produc-

tion stages that should carry inventories. It is suggested that the cost function

be evaluated at each vertex in order to select the minimum cost solution.

Hanssmann (1959-30) continued work on i-he problem presented by Simpson

but under less restricting assumptions. He permits periodic ordering for each

inventory, where ordering decisions are based upon the actual inventory level,

quantities due in, and forecasts of future demands 'sales). Demand is assumed

to be stationary and gi'ren by normal distributions. Sales revenues and inventory

holding costs are considered, but a functional relationship between average

delivery time and expected demands used in lieu of shortage costs. System

optimization is therefore definpd as the maximization of the difference.

between sales revenues and inventory carrying costs. To solve this problem,

Hannsmarn first derives expressions for expected overages and shortages as

functions of a target (critical) level for a particular product and activity.

These results are used to derive an expression for expected profit (revenue

minus inventory cost) as a function of delivery time which is then maximized to

find the optimal delivery time from which the optimal ordering policy is found.

These results are then related t ) the multi-activity situation, %here delivery

times for each activity are dependent upon the existence of stockages at higher

activities. An expected profit function is developed containing expected delivery

times as variables. Again, maximizing yields optimal delivery times and,

hence, optimal ordering policies; if the resulting target level is zero for a

given activity, then no inventory is carried there. Finally, the same approach

is extended to the multi-product, multi-activity problem. A dynamic programming

procedure is used to find delivery times and corresponding positionings of inven-

tories that maximize expected profit.

In another study, Brown-Silverman-Perlman (1971-10) consider a parallel

system of activities (aircraft carriers) supported by a forwad supply point

where all included activities ca.ry all products of interest. This system, in

turn, is supported by a higher level system which is abstractly represented in

terms of alternative resupply processes and subprocesses (these processes

rr.ay be viewed as "activities" in the broad sense). It is noted that the length
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of time required to resupply the lower system is dependent upon which combi-

nation of higher level processes are incurred; this length of time, in turn,

affects the amounts and costs of inventories required in the lower system.

Since each higher level resupply activity has associated costs, the problem

is one of selecting a combination of the resupply activities, from among those

available, for which the sum of inventory cost3 and resupply process costs are

minimized.

Inventory costs in Lhe lower systemn are determined by repeated use of a

single-activi t y model by Brown-Corcoran-Lloyd (9); this is an extension of

the classical dynamic programming model to include reparable items. Appli-

cation of the model to the 'lower activities (all assumed to be the same) yields

critical levels from which a demand probability distribution against the higher

activity (forward supply point) is derived and approximated by a Poisson dis-

tribution. The model is then applied to the higher stock point considered as a

single activity. It is noted that this procedure results in overstated inve: tory

costs but the analysis proceeds under these assumptions.

Next, the higher level resupply system is considered "n terms of alter-

native subprocesses, each having an associated response time and level of

expeiuditure (in general, the level of expenditure Increases as response time

decreases). The total system cost is then given as the sum of costs for selected

processes and resulting inventory costs of the lower system which depend upon

the response times of the selected processes. The optimization problem becomes

a 0-1 integer programming problem which is solved by a branch-and-bound al-

gorithm. The model is applied to each product independently;- no account is

made of possible economies of scale in the resupply process expenditures.

A study by Pincus (1971-45) deals directly with the inventory positioning

problem where all activities in the multi-activity system represent different

stockage facilities. In this study, a basic multi-activity structure is assumed,

from which a substructure is to be selected for each product in order to mini-

mize expected costs over all products and facilities. For each possible sub-

structure, inventory costs will result for each product and each included activity

will have various fixed (capital expenditures) and recurring (operating) costs.

Based upon a matrix of such costs for all possible activity suastructures and

all proý'ucts, a 0-1 integer program-ning problem is formulated, the solution
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yields a substructure for each product such that total inventory and facility

costs are minimized. A branch-and-bound algorithm is presented to solve

this problem.

As part of the inputs to this model, itis necessary to derive expected

inventory costs for a given product in a given multi-activity substructure.

Although it is pointed out that any one of the several available multi-activity

inventory control models can be used to obtain these costs, a model based upon

the Clark-Scarf (16) approach was formulated for purposes of the study. The

use of this model is illustrated by numeric examples. Finally, an example

consisting of 30 products and ten activity substructures is prebented to illus-

trate the use of the overall design model.

2. Repair Level Decision Models_.

Many multi-activity inventory systems consist of stocks of spare parts

used in repair and overhaul processes for some end article or articles. Viewing

the end item as a hierarchy of component parts, an important problem is one cf

determining, for each component in the hierarchy, whether or not to repair it

when it fails: this is also known as the repair versus discard decision problem.

In a multi-activity inventory system, an interrelated problem is one of deciding

where to repair a component if it is to be repaired. Solutions to these problems

will control the mix of inventories at each activity in the system as well as the

mix of other required resources such as repair equipment and personnel. It

may be noted that this problem is analogous to the inventory positioning problem

but with additional dimensions of complexity.

Although this problem has been investigated in several studies, the one

by Williams (1969-62) is perhaps the most general. Here, a model is developed

which accepts as inputs descriptions of the hierarchical structure of the end

item (s), both in terms of the physical breakdown of included parts and in terms

of steps taken to isolate faults that might occur. Also input are factors describing

the multi-activity repair and supply system, reliability factors for included parts,

and various cost functions relating to the repair and supply operations under

stationary assumptions. Based on these inputs, the model uses a dynamic

programming solution method to find combinations of repair actions to be taken

which minimize overall support costs. As outputs, the model specifies whether

or not a component should be repaired when it fails and, if repaired, which

facility in the structure should do the repair. These outputs, in turn, determine
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for each item the particular activities in the system that will experience demand

because of the repair decisions and, hence, where inventories of the item should

be established. The outputs also control the positioning of maintenance resources

in an analogous fashion.

3. Contingency Support Models.

An important problem in military (and some commercial) organizations is

the acquisition, maintenance, and distribution of inventories in support of

various kinds of postulated contingency operations. The problem has multi-

activity aspects of two general kinds: (a) In the normal supply system, what

augmentations of inventories are needed for anticipated contingencies and at

what echelon level or levels should the contingency stocks be carried? (b) In

actual contingency operations, what supply echelon structures should be constructed

to best support operations? (This question is of particular importance in the

Army where contingency operations often create three- or four-echelon supply

systems that change dynamically in terms of structure and location.) The

general problem is further characterized by a practical inability (with certain

exceptions) to deal with individual products; instead, the analysis for planning
purposes must be based upon the consideration of product aggregates or classes

of relatively homogeneous commodities.

It has long been recognized that solutions to these problems are critically

dependent upon the types of contingency operations considered and upon the types

and capabilities of various kinds of availabl,! transportation systems. Past

research in this area has been primarily upon "connective" models such as

transportation models connecting supply with consumption and planning factor

models connecting operations with material requirements. Although a number of

studies of the multi-activity aspect have been made, no satisfactory integrated

analytic investigation has been achieved so far as is known. An attempt by Clark

(1963-15) in this direction did not proceed beyond a formulation of a single-

activity problem.

4. Evaluation by Servomechanism Theory.

Several studie3 have used portions of servomechanism theory to analyze

the single-activity inventory control problem ii, cost-free systems. These

studies have considered both deterministic and random demand. Early work

assumed continuous (over time) inputs and outputs of the inventory system and

used Laplace transforms as the analytic tool. Later work recognized the dis-

crete nature of inventory processes and used z-transform methods.
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The multi-activity inventory problem using the discrete time (sampled

data) servomechanism approach was investigated by Burns (1970-11). Although

potentially the theory could be used for inventory control purposes in the same

sense as the other techniques described previously, the main thrust of Burn's

study was to apply the method to evaluate the consequences of using a particular

decision (ordering) rule at the various activities in a cost-free inventory system.

The decision rule studied was that the desired level of inventory is expressed

as a certain number of weeks' worth of expected demand, the expectation being

a first-order exponentially-smoothed average of past demands. For this decision

rule, a model is constructed for the case of a series activity structure which is

later interpreted in context with an arborescence structure. The model is used

to show that the system amplifies minor variations in consumer demand into major

disturbances at higher activities. This amplification is traced to two sources,

one being a legitimate and unavoidable inventory adjustment and the other being an

unwarranted "false order" effect. A new decision rule is then derived which

automatically suppresses the false orders. The two decision rules are compared

by use of a simulation model of a three-echelon system. It is demonstrated that

the revised rule experiences fewer stockouts, maintains lower average inven-

tories, and greatly reduces the amplification effect.

5. Evaluation by Simulation.

All analytic inventory control models suffer from constraining assumptions

concerning the environment within which the inventory system operates. Although

simulation models can incorporate richer representations of the environment,

they cannot solve inventory problems in the same sense as the analytic approaches.

They are useful, however, in an evaluative or comparative role: the behavior

of analytically derived policies can be studied, or alternative inventory policies

can bc compared in context with richer representations of the operating environ-

ment than were used in the derivation of the policies.

For multi-activity inventory problems, several simulation models (such as

in (11) and (14) ) have beer constructed to provide realizations of a particular

policy in essentially the same operating environment as that assumed in the

derivation of the policy; the purpose here is to demonstrate the effects and

behavior of the analytically derived policy. Other simulation models have been

constructed for the explicit purpose of comparing alternative policies; a recent

example is given by Haber (1971-27). In this multi-product simulatior mode!,
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the operation of a particular three-level arborescence activity system (the

Polaris submarine support system) is studied for four prinoipal inventory

policies. None of the policies tested were mi!lti-activity policies in the sen3e

of being derived from analytic multi-activity inventory theory; instead, they

reflected variations of policies used in practice which tend to be aggregates

of single-activity policies. The operation of the simulation model yields ex-

pected costs stratified by type of cost and type of policy, and various inventory

performance statistics for each type of policy. From these results for the

particular inventory system studied, judgments were made concerning the

behavior and relative effectiveness of the alternative policies for various classes

of products.
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VI. DIRECTION OF FUTURE RESEARCH

It is probable that re,.aarch in multi-activity inventory theory has reached

a point where high .st returns have already beer, achieved (the easy problems

have been solved) and, therefore, marginal returns from further work are

likely to diminish. The principal opportunities for further work, both by

individual researchers and research teams, probably lie in refinements and

extensions of previous results and in the reduction of currently available theory

to practice in actual inventory situations. In addition, there may still be a

small probability that a ncwrý basic theory can be developed which would super-

cede much of the previous results.

Before considering dire "tions that future research in multi-activity

inventory theory might take, some impressions of the current state of the art

are given. In particular, an attempt is made to identify weaknesses in the

current theory which future research might be able to overcome.

1. State of the Art.

The review of research on the multi-activity inventory problem in previous

sections has included studies whizh might be considered as obsolete in view of
later progress. Although these studies were included to provide some kind of

historic -arspective, it is possible that some of the techniques used may play
a role in future research. Furthermore, the earlier work tends to be simpler

and therefore may be more viable with respect to practical use than the more

sophisticated results of later research.

Looking at iecent work on the deterministic inventory control problem,

an impression is gained that the problem as formulated has been solved, at

least from a theoretical point of view. The models and solution methods

developed by Zangwill, Veinott and others appear to encompass mcst of the

important featureE uf the prollem. For a general problem of practical size,

the amount of computation involved in finding solutions is much too great to

be practical, but this is probably due more to the inherent complexity of the

problem than to the theory. However, for special cases and assumptions that

are not too unrealistic, efficient solutions methods have been developed which

make the computational effort more tractable.

In looking at the vari ,is t( chniques that have bec.n applied to the stochastic

multi-activity problem, it is clear that the Bessler-Veinott approach is consid-
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erably more general than the others in terms of included features of the

problem. The most important feature not included is economy of scale re-

sulting from fixed costs, but this factor for actual inventory problems will

probably decline in relevancy as management and production automation

continues to increase. Another significant limitation is that conditions

necessary for the myopic policies of this approach to be optimal are quite

restrictive with respect to consideration of dynamic factors. Within these

limitations, the main difficulty with the model is a computational one, again

largely attributable to complexities resulting if the full power of the model

is exercised. Limitations imposed to make the computation possible tend to

be over-restrictive relative to practical situations. However, the theory is

very useful in analyzing the characteristics of optimal policies for the multi-

activity inventory control problem, particularly where stationary or near

stationary conditions pertain.

A sufficient amount of experience with the dynamic programming approach

to the multi-activity inventory control problem is now available as to confirm

ite computational practicability (see (10) and (43) for typical citations of compu-

"tation experience). Unfortunately, this technique suffers from several inade-

quacies with respect to included features of the problem. The case of paralle'.

activities is still bothersome, even though there is reason to believe good

approximations are available. But the main trouble is that, so far, the method

has been confined to single-product problems. Extension to even simple multi-

product situations have not yet been made.

The dynamic programming approach and, to a lesser degree, the'Bessler-

Veinott model consider nonstationary aspects which are very important in practical

situations, but they both suffer from assumptions of periodic review. Everything

else being the same, continuous review policies should result in less inventory
costs tlian periodic review poiicies. ine expected cost and stationary proce.;s

approache yield continuous review policies, but they cannot adequately cope
with nonstationary factors. Although continuous review models have been developed

ior multi-product problems, only simple product interdependencies (such as

budget or capacity constraints) have been considered in contrast to the more

general inter-product relationships encompassed by the Bessler-Veinott method.

The main advantage of expected cost and stationary process models is that the

computations involved in obtaining solutions are considerably less than for the

dynamic technique.
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If a survey were to be made of techniques currently used to control actual

multi-activity inventory systems, the use of heuristic methods which, at best,

are only slightly tempered by results of inventory theory will probably be found

to prevail in the majority of the systems. For the remainder, expected cost

models are probably used, but mostly in the form of combinations of single-

activity models rather than an integrated system model. A claim is made (19)

for the Sherbrooke model that it is one of the first analytic multi-activity models

to be translated from theory to practice. Looking into the near term future,

it is plausible that both the stationary and dynamic programming multi-activity

techniques are candidates for practical implementation, but most probably with

nonoptimal modifications to cope with realisms not encompassed by the theory.

For the more general Bessler-Veinott approach, a wider base of familiarity with

the method and further work to reduce the computation requirements is probably

indicated prior to any serious implementation consideration.

Considering next the class of allocation models reviewed in Section IV,

it appears that the books are more or less closed with respect to this as a

separate problem. Instead, this appears to be subsumed by the class of supply

policies derived from the more general inventory control techniques. This is

particularly evident in the Bessler-Veinott method, where supply policies are

explic;tly consider-:d in a formal manner. On the other hand, it is easy to

envision special allocation or redistribution problems for which the use of

simpler methods is attractive.

The stock positioning, repair level, and contingency support problems dis-

cussed in Section V all have a common denominator; namely, the network of

activities in a multi-activity system is itself a decision variable as well as

imbedded inventory control policies. Thus, the three problems cited may be

viewed as special cases of a general problem that has an additional dimension

of complexity over the multi-product, multi-activity inventory control problem

(an appropriate descriptor for thf additional dimension might be "multi-network").

It is probably fair tc assert that the state of the art with respect to this larger

problem is still primitive, as testified by the confinement of progress to date

to special cases. Although the Williams model on the repair-level problem

recognizes product interdependencies in terms of parts hierarchy relationships,

the model assumes stationarity and inventory policies are not included in the
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form of decision va:riables. The Pincus model includes inventory policies in

the form of suboptimizations, permits only simple interproduct relationships, and

does not consider regeneration thin ugh repair. As previoasly noted, analytic

work on the general contingency problemn, which is actually a dynamic version (if

the stock positioning problem, is virtually nonexistent.

2. Short-term Research.

In general, short-t erm opportunities for research on multi-activity inventory

problems lie in extensions and refinements of previously developed approaches,

and in several aspects of the problem of translating available theoretical results

to practice. Of the several approaches to the inventory control problem, the

ones that assume nonstationary stochastic conditions appear to be the most

interesting.

In the Clark-Scarf approach, further investigations of the parallel activity

case (and the general arborescence structure) might prove fruitful; in particular,

the work of Zacks provides a good lead on this problem. Additional research

here could take the form of (a) finding conditions such that relatively simple

policies are optimal, (b) determining sharper bounds on the optimal solution,

or (c) developing good approximations to the optimal solutions. Another useful
extension of this approach would be to permit simple inter-product dependencies

such as budget or capacity constraints; it may also be possible to consider rmoie

detailed interrelationships by appropriate interpretations of activities as products

in some manner analogous to the Bessler-Veinott development.

The Bessler-Veinott model is of special interest with respect to further

research because it enables the inclusion of more factors of the problem than

the other methods; its ability to cope with multi-product as well as multi-

activity systems is particularly attractive. Even though several methods for

alleviating computational difficulties of the model have been developed, including

bounding, approximation, and special assumption methods, further research

along these lines may be beneficial. In general, these observai..jns appli; also

to the deterministic models of Zangwill and Veinott.

Since the use of network theory for the multi-activity inventory problem

has only recently been opened up by Connors-Zangwill, it is difficult to judge

what directions future research along this line might take. It may be that

significant new developments will depend upon advances in general network

theory. On the other hand, extensions and re-finements within the framework

already established may be possible.
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It has been pointed out that continuous review assumptions have an advantage

over periodic review. Ihe general continuous review, dynamic problem is very

difficult. However, further research along the lines of step-function approxi-

mations to continuous review policies may be useful. The rather heuristic

method used in the Clark-Metcalfe model (referred to in Section 111-3) may

provide a start in this direction. In this model, it is assumed that critical

levels are computed periodically but under the assumption that they are imple-

mented in a continuous review mode throughout the period; in effect, this

"-liminates the implicit inflation of resupply time induced by the periodicity

assumption. A study of this and other approximations to the optimal continuous

review policies might provide useable results.

As previously indicated, further research on allocation and distribution

problems is most likely to be accomplished in context with the more general

inventory control problem. For the repair level and other special problems

defined in Section V, further work will undoubtedly be done as extensions of

the previous studies, but research on the general problem of which the cited

problems are special cases is of a more long-term nature. Insofar as evalu-

ation techniques are concerned, simulation is always available for use in a

variety of evaluation and planning problems, but it is hard to categorize such

applications pe se as theoretical research. Although some additional work

on the use of servomechanism theory may occur for evaluation or inventory

control purposes, it will probably be in context with special kinds of products

or systems.

Even though it may not be appropriate to view efforts to reduce multi-

activity inventory theory to practice as theoretical research, this field should

not be overlooked. The adaptation of the theory in the form of more-or-less

heuristic models of multi-activity systems that are intuitively appealing for

practical application provides importart opportunities for further work. Also,

the susceptibility of a particular analytic method with respect to its practical

use may be considered as some kind of ultimate criterion of its worth.

3. Long-term Research.

Over the long run, the real frontier for research on multi-activity inven-

tory systems lies in the area of integrated logistics, where the surface so far

has barely been scratched. In many organizations, the pure inventory problem

does not exist and an inventory model, no matter how comprehensive in terms

of activity structures, cost ftunctions, and optimization, fall considerably short
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of satisfying overall logistics objectives. A full appreciation of the interplay

among operations, m'aintenance, transportation, and supply, all being tempered

and affected by associat-!d management and data processing systems, tends to

relegate pure inventory models to a less relevant status. Even though the

full problem is exceedingly complex, there are several avenues worthwhile

exploring by analytic techniques.

As a start in this direction, the extension of existing theory to what might

be called the multi-network problem (which, by definition, includes multi-

product and multi-activity considerations) could be contemplated. This problem

is roughly defined as one where parts hierarchy structures and related relia-

bility and end-item usage factors are given, together with a network xepresenta-

tion of the potential logistics support system. It is then desired to find a sub-

structure of the parts hierarchy for which inventories are to be provided and,

for each such item, a subnetwork of the support system at which inventories

are to be maintained such that total system costs are minimized. Theoretically,

this problem encompasses almost all of the multi-activity inventory problems

so far investigated. Also, to properly solve this problem, the notion of

"inventory" should be generalized to include such commodities as manpower,

maintenance equipment, and other support resources.

In dealing with this problem, it is first necessary to define it in more

rigorous terms. Next, an appropriate solution technique must be found. Of

the ones now available, the Bessler-Veinott model may be a possible point of

departufe since it enables the potential consideration of dependencies among

items in a parts hierarchy. Unfortunately, however, the problem is charac-

terized by features involving economies , ( scale which this technique cannot

handle; some way around this difficulty would have to be found.

Assuming that a formal model for the problem can be constructed, the next

step would be to look for possible decomposition opportunities which would

almost certainly be necessary if any use were to be made of the model. Also,

if this stage is reached, there would probably be a number of research possi-

bilities with respect to special cases and computation procedures, sensitivit-"

analyses, etc. Even though the full multi-network problem may turn out to

be insolvable in any practical sense, a formal recognition of the problem is

useful in identifying just what kinds of suboptimizations are being made in

current and future multi-activity inventory studies.



T-259 40

Although a solution to the multi-network problem would be a big step

toward the full integrated logistics problem, it would still contain rather

abstract representations of the real world processes. It is quite possible

that advantages of analytic optimization techniques would be overcome by effects

of icatures not included or inadequately represented in the formulation; whether

or not this is true would be very difficult to prove. As a result, it might be

profitable to resort to a decision-malking apparatus which might be called

"Imi cro -simulation'.

The uie of the micro-simulation technique is based upon a recognition of

an advanced real time management system as being, in effect, a "model" of

the real world system being managed. Since such a management system

contains status records in varying degrees of detail, 3upported by data flows to

keep the records current, it is theoretically possible to add components that

would simulate the external stresses upon the system as caused by the real

world operations. With such additions, it would then be possible to make short-

term accelerated-time, simulated "excursions" i -ito possible futures of the

system for decision-making purposes. Such micro-simulations might employ

evaluation-selection procedures for postulated alternatives, or they might

contain adaptive decision-making models.

A very crude example of the latter possibility is given by a model developed

by Fisher, et al (1968-23). This model, which is primarily a Monte Carlo

simulation model for military logistics applicationg, contains two innovative

features: the use of task networks to describe operational and support environ-

ments, and the use of an embedded decision model for resources determinations.

The task network concept involves the establishment, by user-provided

data, af networks of interconnected tasks or activities to represent equipment

utilization, repair and overhaul functions, and other aspects of the operational
4

and logistics environment. The user also identifies typed and arm'ounts of

resources needed to accomplish each kind of task; categories of included support

resources are maintenance personnel, repair equipment, and spare parts. Other

input data includes time distribudions for task accomp)ishment, priority rules,

shift policies, end-item utilization schedules, etc. With this data, the model

simulates the operation of end-equipment, the incurrence of malfunctions, the

accomplishment of servicing tasks, the accomplishment of repair and overhaul

functions, the utilization and interaction of resources in the demand process,
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tl.,- changes in resource availability according to shift policies, and other

facets of the overall operation. In the simulation, inventories of spare parts

are treated identically the same as inventories of other needed resources such

as maintenance specialists, shop equipment, etc. Also, the model permits

tradeoffs within and among the various types of resources whenever shortages

occur; included is task preemption, tse of substitutes, task deferment,

cannibilization, etc.

The embedded decision model was designed to operate during the course of

a particular simulation according to criteria established at Ohe outset. Its

general function is to identify particular resource items (bottlcmneck items)

tending to inhibit the achievement of overall end-item utilization objectives

and to cause selective injections of additional amounts of these resources

according to a cost-effectiveness criterion. Thus, the "reordering" of a

resource is a consequence not of before-the-fact demand estimates, but rather

of need against end objectives after all reasonable advantages are taken of
resource tradeoffs, deferment of needs, etc. The decision model uses an

automatic exponential-smoothing forecasting technique to predict degradation

in system performance, and a simple marginal analysis procedure for resource

augmentations.

Extrapolating the methodology of this model to the micro-simulation pro-

cedure, the simulation aspects would he replaced by the real time management

system, augmented by components for simulating external stresses. It is

clear, however, that this procedure, even though extensively refined and

supported by analytic modeis and micro -simulations for decision-making over

longer-term futures of the system, cannot achieve "optimal" policies or re-

source allocation decisions in the same sense as in purely analytic techniques.

Nevertheless, it may represent a viable approach with respect to the practical

aspects of the integrated logistics problem.
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